Ethyl Ester of 2-Nitro-3-ferrocenylacrylic Acid

By Ewa Skrzypczak-Jankun, Andrzej Hoser, Elżbieta Grzesiak and Zygmunt Kaluski
Institute of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

(Received 5 July 1979; accepted 24 December 1979)

Abstract

C}_{15} \mathrm{H}_{15} \mathrm{FeNO}_{4}, M_{r}=329 \cdot 1\), monoclinic, $P 2_{1} / c, a=10.497$ (2), $b=16.655$ (3), $c=8.609$ (2)

 $\AA, \beta=108.47(5)^{\circ}, Z=4, D_{x}=1.531 \mathrm{Mg} \mathrm{m}^{-3}$. The structure was solved by direct methods. Refinement, by a full-matrix least-squares method, converged to $R_{F}=$ $0.068\left(R_{w}=0.037\right)$ for 1944 observed reflections. The conjugated double-bond system cyclopentadienyl-$\mathrm{C}(11)=\mathrm{C}(12)-\mathrm{C}(13)=\mathrm{O}(1)$ is not planar. The bonds $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ have the s-cis conformation with a torsion angle around the single bond of $-0.9(5)^{\circ}$. The cyclopentadienyl rings in the ferrocenyl skeleton are within $1.7(5)^{\circ}$ from parallelism and $5.0(5)^{\circ}$ from eclipse.Introduction. The title compound was synthesized and investigated in the Silesian University by Ratajczak and co-workers and supplied to us for a detailed description of the conjugated double-bond system.

A crystal suitable for X-ray analysis was obtained by slow evaporation of a saturated n-hexane solution. The unit-cell parameters were determined by leastsquares calculation based on the angular settings for 15 automatically centred reflections with 2θ between 10 and 35°. Data were collected to $2 \theta=60^{\circ}$ with Mo $K \alpha$ ($\lambda=0.71069 \AA$) radiation, a graphite monochromator and the $\theta-2 \theta$ scan technique with scan speeds varying linearly between 2.00 and $29.30^{\circ} \mathrm{min}^{-1}$, depending on the reflection intensity. Three control reflections were monitored every 50 measured intensities with no significant variation in intensity observed. Of the 4178 unique reflections, 1944 had $I>1 \cdot 96 \sigma(I)$ and were used in subsequent calculations. Intensities were corrected for Lp but not for absorption $\left[\mu_{l}(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=1 \cdot 10\right.$ mm^{-1}.

The structure was solved by MULTAN. The Fe atom was located on an E map and the remaining atoms were found with the help of a Fourier synthesis. Full-matrix least-squares refinement, with anisotropic thermal parameters for all atoms, gave an R factor of 0.086 . The H atoms were located on a difference map and were included in the refinement with all parameters fixed, except those for $\mathrm{H}(\mathrm{C} 11)$. The refinement converged to $R=0.068$ with a corresponding $R_{w}=$ $\sum w^{1 / 2}\left|F_{o}-F_{c}\right| / \sum w^{1 / 2}\left|F_{o}\right|=0.037$ for 1944 reflections. The function minimized was $\sum w\left|F_{o}-F_{c}\right|^{2}$ with the weights $w=1 / \sigma^{2}\left(F_{o}\right)$. The $X T L / E-X T L$ system of

Table 1. Positional parameters $\left(\times 10^{5}\right.$ for $\mathrm{Fe}, \times 10^{4}$ for $\mathrm{C}, \mathrm{N}, \mathrm{O}$ and $\times 10^{3}$ for H) and isotropic temperature factors $B_{i}\left(\AA^{2}\right)$

	x	y	z	B_{i}
Fe	78911 (7)	13440 (4)	11612 (8)	2.71 (3)
C(1)	6506 (5)	747 (3)	-687 (5)	2.9 (2)
C(2)	6630 (5)	1567 (2)	-1149 (5)	3.1(2)
C(3)	6281 (5)	2069 (3)	-14 (6)	$3 \cdot 6$ (2)
C(4)	5956 (5)	1582 (3)	1165 (6)	$3 \cdot 8$ (2)
C(5)	6130 (5)	765 (3)	773 (6)	$3 \cdot 2$ (2)
C(6)	9829 (5)	1511 (4)	1204 (6)	4.5 (3)
C(7)	9671 (5)	734 (4)	1773 (7)	$4 \cdot 7$ (3)
C (8)	9234 (5)	820 (4)	3160 (6)	$4 \cdot 3$ (2)
C(9)	9110 (5)	1651 (4)	3443 (6)	$4 \cdot 2$ (2)
$\mathrm{C}(10)$	9485 (6)	2072 (3)	2227 (7)	$4 \cdot 8$ (3)
C(11)	6706 (5)	2 (3)	-1465 (6)	$2 \cdot 8$ (2)
C(12)	6928 (4)	-121(3)	-2872 (5)	2.6 (2)
C(13)	6953 (5)	-925 (3)	-3579 (6)	3.7 (2)
$\mathrm{C}(14)$	7192 (6)	-1648 (3)	-5859 (6)	4.6 (2)
C(15)	7508 (6)	-1470 (3)	-7385 (6)	$5 \cdot 3$ (3)
$\mathrm{O}(1)$	6787 (4)	-1533 (2)	-2915 (4)	$4 \cdot 6$ (2)
$\mathrm{O}(2)$	7173 (3)	-883 (2)	-5027 (4)	$3 \cdot 8$ (1)
$\mathrm{O}(3)$	8235 (4)	-855 (2)	-3502 (5)	$5 \cdot 8$ (2)
$\mathrm{O}(4)$	6144 (4)	798 (2)	-4970 (4)	$5 \cdot 7$ (2)
N	7108 (5)	559 (2)	-3871 (5)	$4 \cdot 2$ (2)
HC(2)	694	181	-222	5.0
HC(3)	612	267	-12	5.0
HC(4)	599	179	240	5.0
HC(5)	591	27	140	$5 \cdot 0$
HC(6)	11	169	19	5.0
HC(7)	972	15	104	5.0
HC(8)	905	34	389	6.0
HC(9)	878	191	441	6.0
HC(10)	949	272	210	6.0
HC(11)	667 (2)	-47 (2)	-83 (4)	$2 \cdot 6$ (9)
HC(141)	797	-203	-495	6.0
HC(142)	643	-208	-597	6.0
HC(151)	763	-199	-810	6.0
HC(152)	674	-109	-794	6.0
HC(153)	854	-115	-712	6.0

programs (Syntex, 1976) was used during the calculations. Positional parameters are listed in Table 1.*

Discussion. An ORTEP drawing of the molecule (Johnson, 1965) and the bond lengths and valency

[^0]
\[

$$
\begin{array}{lr}
\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12 & -7.2(6)^{\circ} \\
\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13 & -172.6(6)^{\circ} \\
\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 1 & -0.9(5)^{\circ} \\
\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 2 & 178.7(3)^{\circ}
\end{array}
$$
\]

Fig. 2. View of the molecule ($x O z$ projection) with the angles between the planes.

The $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ conjugated double bonds have the s-cis conformation. The bonds $\mathrm{C}(11)=\mathrm{C}(12)$ and $\mathrm{C}(13)=\mathrm{O}(1)$ have typical double-bond lengths and bonds $\mathrm{C}(12)-\mathrm{C}(13)$ and $\mathrm{C}(1)-\mathrm{C}(11)$ are only slightly shorter than a $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{2}}$ single bond. This is in spite of the fact that the deviations from planarity are not large enough to prevent conjugation. The torsion angles (see Fig. 1) of $-0.9(5)^{\circ}$ for $\mathrm{C}(11)=\mathrm{C}(12)-\mathrm{C}(13)=\mathrm{O}(1)$ and $-7.2(6)^{\circ}$ for $\mathrm{C}(2)=\mathrm{C}(1)-\mathrm{C}(11)=\mathrm{C}(12)$ indicate that the s-cis double-bond system is planar, but not coplanar with the aromatic system of the ferrocenyl group. The vinyl substituent makes a dihedral angle of $8.0(5)^{\circ}$ with the $\mathrm{C}(1)-\mathrm{C}(5)$ ring. The angles between the planes defined by the chosen groups of atoms are shown in Fig. 2 (the equations for the planes, and the individual distances from the planes and their e.s.d.'s have been deposited; see deposition footnote).

The intermolecular distances are all in the normal range, except $3.404(8) \AA$ for $\mathrm{C}(7) \cdots \mathrm{C}(13)$ ($-x,-y,-z$) and 3.099 (7) \AA for $\mathrm{C}(13) \cdots \mathrm{O}(4)(-x,-y$, $-z-1$).

The authors wish to thank Professor A. Ratajczak for providing the crystals.

This work was supported by the Polish Academy of Sciences in the framework of the problem MR I-9, 1.13.3.

References

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Kaluski, Z. \& Skrzypczak-Jankun, E. (1978). Proceedings of the Pre-Congress Symposium on Organic Crystal Chemistry, 30 July-2 August, Dymaczewo, Poland.
Krukonis, A. P., Silverman, J. \& Yannoni, N. F. (1972). Acta Cryst. B28, 987-990.
Syntex (1976). XTL/E-XTL Structure Determination System Operation Manual. Syntex Analytical Instruments Inc., 10040 Bubb Road, Cupertino, California 95014, USA.

[^0]: * Lists of structure factors, thermal parameters and data for the least-squares planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34998 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1980 International Union of Crystallography

